DOI QR코드

DOI QR Code

Potential and Future Directions of Effect Assessment of Polluted Sediment Using Sediment Elutriates: Effects on Growth and Molecular Biomarkers on Marine Copepod

퇴적물 용출수를 이용한 오염 퇴적물의 생물영향평가 가능성과 방향: 요각류 유생의 성장 및 분자생체지표의 활용

  • Won, Eun Ji (Korea Institute of Ocean Science and Technology) ;
  • Gang, Yehui (Korea Institute of Ocean Science and Technology)
  • 원은지 (한국해양과학기술원 환경기반연구센터) ;
  • 강예희 (한국해양과학기술원 환경기반연구센터)
  • Received : 2017.05.30
  • Accepted : 2017.06.26
  • Published : 2017.06.30

Abstract

Several bioassays have been performed for assessment of the impact of polluted sediments. The direct exposure method using sediments is limited by difficulty controlling feeding and its effects on organisms. Furthermore, only macro-organisms and benthic organisms are used. To evaluate the potential application of sediment elutriate as a complementary strategy for impact assessment, copepods, small organisms with a short life cycle, were exposed to sediment elutriates, and several end-points were measured. As a result, sediment elutriates prepared from polluted sites caused growth retardation in marine copepods. In terms of molecular biomarkers, antioxidant-related and chaperone protein gene expression levels were increased in a dose- and time-dependent manner. Thus, we suggest that sediment elutriate tests can provide an effective alternative for toxicity assessment using whole sediment samples. Further studies are required to obtain sufficient data for future applications.

오염퇴적물의 생물영향평가를 위해 다양한 생물검정 연구가 수행되고 있다. 퇴적물에 직접 노출시키는 평가 방법은 실험과정 동안 섭식 및 섭식에 의한 생물의 영향을 배제할 수 없으며 관찰을 위한 실험 생물이 대형생물 또는 저서성 생물에 제한되는 등의 한계가 있다. 본 실험에서는 짧은 생활사를 가지며 많은 연구에서 독성 결과가 축적되어 있는 요각류와 퇴적물의 용출수를 이용해 생물영향평가의 가능성을 확인하고자 하였다. 오염의 정도가 다른 두 정점의 퇴적물 용출수에 해산 요각류를 노출 시켜 개체 및 분자 수준에서 관찰되는 변화를 측정한 결과 해산 요각류의 유생의 성장과 분자생체지표의 발현에서 오염된 퇴적물의 용출수에서 대조군과 유의한 차이를 보였다. 분자생체지표의 발현은 용출수의 희석 정도와 노출 시간에 의존적인 경향을 나타내 용출수를 이용한 생물영향평가의 가능성을 보여주었다. 본 논문 결과를 바탕으로 퇴적물의 오염 및 생물영향평가에 있어 용출수 노출시험이 오염물질의 정량적 분석결과를 보완할 수 있는 방법으로 이용될 수 있을 것을 확인하였으며 향후 많은 자료의 축적과 활용성에 대한 평가 및 기준이 제시되어야 한다고 제안한다.

Keywords

References

  1. Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD. 2010. Adverse outcome pathways: a conceptual framework to support ecotoxicology research andrisk assessment. Environ Toxicol Chem. 29: 730-741. https://doi.org/10.1002/etc.34
  2. American Society for Testing and Materials (ASTM) 2009, D5660-96 Standard test method for assessing the microbial detoxification of chemically contaminated water and soil using a toxicity test with a luminescent marine bacterium, ASTM International, United States, p. 1-9.
  3. Bat L, Raffaelli D. 1998. Sediment toxicity testing: a bioassay approach using the amphipod Corophium volutator and the polychaete Arenicola marina. J Exp Mar Biol Ecol. 226(2): 217-239. https://doi.org/10.1016/S0022-0981(97)00249-9
  4. Dahl U. 2008. Integrating biochemical and growth responses in ecotoxicological assay with copepod. Ph.D. dissertation, Stockholm University, Sweden.
  5. Dahms HU, Won EJ, Kim HS, Han J, Park HG, Souissi S, Raisuddin S, Lee JS. 2016. Potential of the small cyclopoid copepod Paracyclopina nana as an invertebrate model for ecotoxicity testing. Aquat Toxicol. 180:181-194.
  6. Ferraz MA, Alves AV, Muniz CC, Pusceddu FH, Gusso-Choueri PK, Santos AR, Choueri RB. 2017. Sediment toxicity identification evalutaion (TIE phases I and II) based on microscale bioassays for diagnosing causes of toxicity in coastal areas affected by domestic sewage. Environ Toxicol Chem. DOI: 10.1002/etc.3824. In press
  7. Han J, Won EJ, Kim HS, Nelson DR, Lee SJ, Park HG, Lee JS. 2015. Identification of the full 46 cytochrome P450 (CYP) complement and modulation of CYP expression in response to water-accommodated fractions of crude oil in the cyclopoid copepod Paracyclopina nana. Environ Sci & Technol. 49(11): 6982-6992. https://doi.org/10.1021/acs.est.5b01244
  8. Harkey GA, Landrum PF, Klaine SJ. 1994. Comparison of whole-sediment, elutriate and pore-water exporues for use in assessing sediment-associated organic contaminants in bioassays. Environ Toxicol Chem. 13(8): 1315-1329. https://doi.org/10.1002/etc.5620130814
  9. Haring HJ, Smith ME, Lazorchak JM, Crocker PA, Euresti A, Wratschko MC. 2010. Comparison of bulk sediment and sediment elutriate toxicity testing mehods. Arch Environ Contam Toxicol. 58(3): 676-683. https://doi.org/10.1007/s00244-009-9447-z
  10. Kwok KWH, Souissi S, Dur G, Won EJ, Lee JS. 2015. Copepods as references species in estuarine and marine water. In: Editor Amiard-Triquet C, Amiard JC, Mouneyrac C. Aquatic ecotoxicology: Advancing tools for dealing with emerging risks. Elsevier; p. 281-308.
  11. Lavorante BR, Oliveira DD, Costa BV, Souza-Santos LP. 2013. A new protocol for ecotoxicologial assessment using nauplii of Tisbe biminiensis (Copepoda: Harpacticoida). Ecotoxicol Environ Saf. 95: 52-59. https://doi.org/10.1016/j.ecoenv.2013.05.010
  12. Lee KW. 2004. Mass culture and food value of the cyclopoid copepod Paracyclopina nana Smirnov. Ph.D. dissertation, University of Gangreung. Korea. [Korean Literature]
  13. Lee KW, Rhee JS, Han J, Park HG, Lee JS. 2012. Effect of culture density and antioxidants on naupliar production and gene expression of the cyclopoid copepod, Paracyclopina nana. Comp Biochem Physiol A. 161: 145-152. https://doi.org/10.1016/j.cbpa.2011.10.019
  14. Lee BY, Kim HS, Choi BS, Hwang DS, Choi AY, Han J, Won EJ, Choi IY, Lee SH, Om AS, Park HG, Lee JS. 2015. RNA-seq based whole transcriptome analysis of the cyclopoid copepod Paracyclopina nana focusing on xenobiotics metabolism. Comp Biochem Physiol D. 15: 12-19.
  15. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression datausing real time quantitative PCR and the $2^{-{\Delta}{\Delta}Ct}$ method. Methods. 25(4): 402-408. https://doi.org/10.1006/meth.2001.1262
  16. Ludwig DD, Sherrard JH, Amende RA. 1989. Evaluation of the standard elutriate test as an estimator of conmatinant release at dredging sites. Res. J Water Pollut. 61 (11/12): 1666-1672.
  17. Moon HB, Choi M, Choi HG, Kannan K. 2012a. Severe pollution of PCDD/Fs and dioxinlike PCBs in sediments from Lake Shihwa, Korea: Tracking the source. Mar Pollut Bull. 64(11): 2357-2363. https://doi.org/10.1016/j.marpolbul.2012.08.018
  18. Moon HB, Choi M, Yu J, Jung RH, Choi HG. 2012b. Contamination and potential sources of polycrominated diphenyl ethers (PBDEs) in water and sediment from the artificial Lake Shihwa, Korea. Chemosphere. 88(7): 837-843. https://doi.org/10.1016/j.chemosphere.2012.03.091
  19. Moore DW. 2001. Review of field validation studies of sediment bioassays for theregulatory evaluation of dredged material, DOER Technical Notes Collection (ERDCTN-DOER-C23), U.S. Army Engineer Research and Development Center, Vicksburg, MS.
  20. Nam SH, An YJ. 2014. Review of the extraction methods of soil extracts, soil elutriates, and soil suspensions for ecotoxicity assessment. J Soil Groundw Environ. 19(3): 15-24. [Korean Literature] https://doi.org/10.7857/JSGE.2014.19.3.015
  21. Novelli AA, Losso C, Libralato G, Tagliapietra D, Pantani C, Ghirardini AV. 2006. Is the 1:4 elutriation ratio reliable? Ecotoxicological comparison of four different sediment: water proportions. Ecotox Environ Saf. 65: 306-313. https://doi.org/10.1016/j.ecoenv.2005.08.010
  22. Phelps HL. 1989. Clam burrowing bioassay for estuarine sediment. Bull Environ Contam Toxicol. 43(6): 838-845. https://doi.org/10.1007/BF01702053
  23. Ra K, Kim KT, Kim ES, Won EJ, Lim KI, Park SY, Shin KH. 2009. Geochemistry of trace metals in Shihwa Lake sediment. Proceedings of the Conference of the Korean Society for Marine Environment & Energy; 2009 Nov.; Korea 175-180. [Korean Literature]
  24. Raisuddin S, Kwok KWH, Leung KMY, Schlenk D, Lee JS. 2007. The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics. Aquat Toxicol. 83: 161-173. https://doi.org/10.1016/j.aquatox.2007.04.005
  25. Sarkar A, Ray D, Shrivastava AN, Sarker S. 2006. Molecular biomarkers: their significance and application in marine pollution monitoring. Ecotoxicology. 15(4): 333-340. https://doi.org/10.1007/s10646-006-0069-1
  26. Schettino T, Caricato R, Calisi A, Giordano ME, Lionetto MG. 2012. Biomarker approach in marine monitoring and assessment: New insights and perspectives. Open Environ Sci. 6: 20-27. https://doi.org/10.2174/1876325101206010020
  27. Shin KH. 2009. Research for developing monitoring and risk assessment method of suspended particles in bottom water of Lake Shihwa. AETEC. Report 08-2-70-76 [Korean Literature]
  28. USEPA. 1991. Evaluation of dredged material proposed for ocean disposal testing manual. EPA 503/8-91/001.
  29. USEPA. 1994. Methods for measuring the toxicity and bioaccumulation of sedimentassociated contaminants with freshwater invertebrates. EPZ 600/R-94/024.
  30. USEPA. 2016. Guidance for performing tests on dredged material proposed for ocean disposal. EPA
  31. Vethaak AD, Hamers T, Martinez-Gomez C, Kamstra JH, de Weert J, Leonards PEG, Smedes F. 2017. Toxicity profiling of marine surfase sediments: A case study using rapid screening bioassays of exhaustive total extracts, elutriates and passive sampler extracts. Mar Environ Res. 124: 81091.
  32. Won EJ, Hong S, Ra K, Kim KT, Shin KH. 2012. Evaluation of the potential impact of polluted sediments using Manila clam Ruditapes philippinarum: bioaccumulation and biomarker responses. Environ Sci Pollut Res. 19(7): 2570-2580. https://doi.org/10.1007/s11356-012-1044-4
  33. Won EJ, Lee JS. 2014a. Gamma radiation induces growth retardation, impared egg production, and oxidative stress in the marine copepod Paracyclopina nana. Aquat. Toxicol. 150: 17-26. https://doi.org/10.1016/j.aquatox.2014.02.010
  34. Won EJ, Lee Y, Han J, Hwang UK, Shin KH, Park HG, Lee JS. 2014b. Effect of UV radiation on hatching, lipid peroxidation, and fatty acid composition in the copepod Paracyclopina nana. Comp Biochem Physiol C 165: 60-66
  35. Word JQ, Gardiner WW, Moore DW. 2005. Influence of confounding factors on SQGs and their application to estuarine and marine sediment evaluations. In: Editor Wenning RJ, Batley GF, Ingersoll CG, Moore DW. Use of sediment quality guidelines and related tools for the assessment of contaminated sediments. SETAC, p.633-686.